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1. Introduction and summary

D-branes have become a sine qua non for the studies of non-perturbative string theory.

The description of D-branes in terms of open strings makes it possible to treat them within

the scope of a boundary conformal field theory (BCFT). Since the BCFT does not rely

upon spacetime supersymmetry, this formulation is well-suited for treating BPS as well as

non-BPS states on the same footing. D-branes have been studied on a variety of singular

and non-singular target spaces using BCFT [1 – 24]. D-branes in the Type-II theories

on non-compact orbifolds constitute an interesting class of such theories [27 – 29, 1 – 3].

The stable states in the spectrum of such theories have been identified with D-branes

wrapped on various supersymmetric cycles of the target space. One of the purposes of

the present article is to go beyond orbifold backgrounds to the more interesting orientifold

backgrounds [30, 31, 49 – 51] and examine the spectrum of stable D-branes.

While open strings arise as fluctuations of D-branes, the latter can be thought of as a

geometric description of the gauge degrees of freedom ensuing from the terminal points of

the former. Hence the interpretation of the states in the spectrum of open strings in terms

of D-branes becomes transparent when viewed in the closed string channel. This is brought

out through boundary states, which incorporate the boundary conditions of open strings in

the closed string language. A formulation of BCFT is in terms of such boundary state. We

consider D-branes in the Type-IIA string theory on an orientifold of the three-dimensional

orbifold
�3/�3 using the boundary state formulation [52, 54, 64]. The orientifold reduces

spacetime supersymmetry further compared to the parent orbifolds [3, 6, 4, 65, 32 – 37, 43 –

48], rendering the standard machinery of the (2, 2) theories unavailable. Nevertheless, D-

branes on certain non-compact three-dimensional orientifolds have been studied earlier,

most which, however, dealt with the Type-IIB string theory [61, 60]. In the present article

we consider the Type-IIA theory on the orientifold, which is a cousin of a certain asymmetric

orbifold with magnetic fluxes on D-branes, of the Type-IIB theory via T-duality [38], which

makes it rather different from the earlier analyses as we shall observe1.

Prior to orientifolding the stable D-brane configurations are the fractional D0-branes [1,

2]. In the present example the D0-branes are inflicted with tachyonic instabilities after

orientifolding. However, we find stable D-instanton configurations in the model which are

otherwise absent in the parent orbifold theory. The unavailability of the (2, 2) machinery

poses a major hurdle in arriving at a geometric interpretation of these states. Nevertheless,

due to the invariance of the boundary states of the D0-brane under the orientifolding

operation we can first consider the geometric objects in the parent orbifold theory. Then,

1For example, the Type IIA orientifold model we discuss, is not T-dual to the Type-IIB oreintifold on�
3/�3 of [25].
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by lifting the orientifold action on these objects as an automorphism squaring up to the

identity leads to the geometric entities present in the orientifold theory. We take this

approach in this article.

In the parent orbifold theory the D-brane configurations are identified with objects in

the derived category of an Abelian category, where the latter can be identified with the

category of coherent sheaves on the blown-up orbifold in the large volume limit and with

the category of irreducible representation of an associate quiver in the so-called orbifold

regime [26]. D-brane configurations in the Type-IIA and Type-IIB theories can be identified

as the elements of the K1 and K0 groups of the Abelian category and its equivariant

descendants on spacetime orbifolds. On orientifolds the stable D-branes are classified by

higher K-theoretic charges. In the present case, the D-brane configurations correspond

to the elements of the Whitehead group, K1, of the Abelian category associated with the

orientifold space. Assuming that the orientifold operation induces an automorphism on the

objects of the Abelian category that squares up to the identity, that is, the boundary states,

we calculate the Whitehead group of the Abelian category. We find that the Whitehead

group is isomorphic to �2, which we identify as the charge of the D-instanton.

The paper is organized as follows. In the following section we describe the orientifold

on which we compactify the Type-IIA theory. Then in the two subsequent sections we

construct the crosscap state and the D-brane boundary state respectively in the BCFT

formulation. Next we calculate various one-loop amplitudes. We show that the D0-branes

are plagued with the tachyonic instability and that the D-instanton gives rise to a stable

configuration, instead. The following section deals with the K-theoretic analysis. Finally

we conclude with discussion of the results. Some of the useful formulas in our notation and

conventions have been relegated to the appendix.

2. The orientifold

Let us begin our discussion by describing the theory under consideration. In this section

we first discuss the orientifold action and then the spectrum of the massless closed string

states. This analysis provides the space-time fields present in the theory.

2.1 Orientifold action

We consider Type–IIA theory in the light-cone gauge on the orientifold [33]
�3/G with

G = (Ω · R · (−1)FL) ⊗ G, where G is a discrete group with both geometric and non-

geometric parts. The first piece of G in parentheses refers to the diagonal group isomorphic

to �2 obtained by combining three �2 groups. Of these, Ω, isomorphic to �2, acts on

the world-sheet fields by reversal of parity, Ω : σ 7−→ π − σ, where σ denotes the spatial

coordinate of the world-sheet. The anti-holomorphic involution R, also isomorphic to �2,

acts by complex conjugation R : Zi 7−→ Zi, on the complex bosonic fields of the world-sheet

theory, whose zero-modes are identified with the complex coordinates of the
�3. This is

tantamount to a reflection of three of the corresponding real coordinates. These are further

accompanied with (−1)FL , which changes the sign of the left-moving space-time fermions
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in order for making G into a symmetry group of the Type–IIA theory. Finally, G contains

a cyclic group G isomorphic to �N and generated by g acting as,

g : Zi 7−→ e2πikviZi, (2.1)

on the complex coordinates of
�3 and similarly on their fermionic counterparts Ψi, i =

1, 2, 3. While much of the discussion in the sequel remain unaltered for any odd integer

N , we shall restrict ourselves to the specific case of N = 3 for simplicity. Thus, we have

k = 0, 1, 2 and ~v = (1/3, 1/3,−2/3). The compact cousin of this model was discussed

in [33]. The combined action of Ω and (−1)FL on the worldsheet fermions is given by,

Ω · R : Ψi(σ) 7−→ Ψ̃i(π − σ), (2.2)

where a tilde designates a right-moving field. Let us also note that by abuse of notation

we denote the groups Ω, R and (−1)FL as well as their respective generators by the same

symbols.

We have described the action of G on the fields of the theory, which can be used to

describe the action on the corresponding oscillators in their mode expansions, as described

in appendix. Let us now discuss its lift to the states of the theory. The unique ground

state |0〉NS in the NS-sector remains unaffected. Let us write the left- and the right-moving

Rammond ground states, hereafter referred to as the R-ground states, as |s〉L = |s0, ~s〉L =

|s0, s1, s2, s3 〉L and | s̃〉R =
∣∣∣ s̃0,~̃s

〉
R

= | s̃0, s̃1, s̃2, s̃3 〉R respectively, where sa, s̃a = ±1
2 for

a = 0, 1, 2, 3. In our convention, the left-moving R-ground states, transforming as 8s under

the Poincaré group SO(8) of the space-time transverse to the light-cone are chosen to be the

ones with a even number of −1/2’s while the right-moving R-ground states, transforming

as 8c under the SO(8), are taken to be the ones in which an odd number of −1/2’s occur.

The action of G on the various R-ground states is given by,

gk : |s0, ~s〉L 7−→ e2πik~v·~s |s0, ~s〉L ,
∣∣∣ s̃0,~̃s

〉
R
7−→ e2πik~v·~es

∣∣∣ s̃0,~̃s
〉

R
;

(−1)FL : |s0, ~s〉L 7−→ − |s0, ~s〉L ,
∣∣∣ s̃0,~̃s

〉
R
7−→

∣∣∣ s̃0,~̃s
〉

R
; (2.3)

Ω · R : |s0, ~s〉L 7−→ |s0,−~s〉R ,
∣∣∣ s̃0,~̃s

〉
R
7−→ eπi( es0+ es1+ es2+ es3)

∣∣∣ s̃0,−~̃s
〉

L
= −

∣∣∣ s̃0,−~̃s
〉

L
,

as the sum
3∑

a=0

s̃a is odd for states belonging to 8c, resulting into

g(k) ≡ Ω·R·(−1)FL ·gk : |s0, ~s〉L⊗
∣∣∣ s̃0,~̃s

〉
R
7−→ −e2πik~v·(~s+~es)

∣∣∣ s̃0,−~̃s
〉

L
⊗|s0,−~s〉R , (2.4)

after taking into account the minus sign that arises in exchanging fermions. In the above

formulas an s in the right-moving state or an s̃ in the left-moving one is interpreted as

their respective numerical values2.

2We can also label the massless states in NS-sectors by their SO(8) weights. Thus, if sa = esa =

(±1, 0, 0, 0| {z }), where |{z} denotes all possible permutations, such states belong to 8v of SO(8). Since
P

a sa =
P

a esa = odd holds for a state belonging to 8v, the last equation of (2.3) holds. Thus the action of the

orientifold group on massless NS-NS massless states is given by eqn (2.4) but without the − sign, since

(−1)FL has no action this time.
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Finally, the left moving and right moving world sheet fermion number operators are

defined as

(−1)F |s0, s1, s2, s3 〉L = −eπi(s0+s1+s2+s3) |s0, s1, s2, s3 〉L
(−1)

eF | s̃0, s̃1, s̃2, s̃3 〉R = −eπi( es0+ es1+ es2+ es3) | s̃0, s̃1, s̃2, s̃3 〉R ,
(2.5)

So, we can choose the GSO-projection operators as in the untwisted sector as,

PU =





(
1+(−1)F

2

)
⊕

(
1+(−1)

eF

2

)
, in the NS-NS sector

(
1−(−1)F

2

)
⊕

(
1+(−1)

eF

2

)
, in the R-R sector.

(2.6)

In the above expression and in what follows a subscript U is taken to designate a quantity

in the untwisted sector, while one in the twisted sector will be designated by T .

2.2 Closed string spectrum

Let us now describe the spectrum of massless closed string states in four dimensions that

survive the orientifolding described above.

Untwisted sector

The untwisted sector corresponds to k = 0 in equation (2.3). In NS-NS sector, first, we

have the four dimensional graviton, gµν and dilaton, φ, whereas the four dimensional part

of the B-field is projected out. However, few components of the metric and B-field along

the “internal”
�3 directions survive. In terms of the oscillators, these states are given by

six G-invariant combinations of states, namely,

(Ψi
− 1

2

Ψ̃j
− 1

2

+ Ψj

− 1

2

Ψ̃i
− 1

2

) |0〉NSNS , i ≥ j (2.7)

where i, j = 1, 2, 3 and |0〉NSNS denotes the ground state in the NS-NS sector, giving rise

to three chiral multiplets in four dimensions3.

Let us now consider the untwisted states in the R-R sector. From equation (2.4) we see

that under Ω · R the state |s0, ~s〉 goes to
∣∣∣ s̃0,−~̃s

〉
in the left-moving sector and similarly

for the right-moving ones. Thus, the states with ~s + ~̃s = 0 flip sign under G and hence go

away from the spectrum. However, certain linear combinations of those with ~s+~̃s 6= 0, but

satisfying ~v.(s+ s̃) = 0, 1 survive and can be rearranged in the following seven independent

states,

|+ + −−〉L ⊗ |+ + +−〉R − |+ −−+〉L ⊗ |+ − ++〉R ,

|+ + −−〉L ⊗ |+ + −+〉R − |+ − +−〉L ⊗ |+ − ++〉R ,

|+ − +−〉L ⊗ |+ + +−〉R − |+ −−+〉L ⊗ |+ + −+〉R ,

|− + −+〉L ⊗ |− + −−〉R − |− − ++〉L ⊗ |− − +−〉R ,

|− + −+〉L ⊗ |− −−+〉R − |− + +−〉L ⊗ |− − +−〉R ,

|− − ++〉L ⊗ |− −−+〉R − |− + +−〉L ⊗ |− + −−〉R ,

|+ + ++〉L ⊗ |− + ++〉R − |− −−−〉L ⊗ |+ −−−〉R .

(2.8)

3We could have written down these states in terms of the SO(8) weight notation, like we did for R-R

case.
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First six of these constitute three chiral multiplets, while the last one joins the four-

dimensional dilaton to form one more. Thus, we have four chiral multiplets from the

R-R sector in total.

Twisted sector

The massless closed string states in the twisted sector corresponding to k = 1, 2 in equa-

tion (2.3) are obtained similarly. The GSO-projector in the twisted sector, PT is identical

to the GSO-projector in untwisted sector, PT = PU . Among the GSO-invariant states

a single one from each of the twisted NS-NS and R-R sectors survive the orientifolding.

These are
[∣∣∣∣0,

1

3
,
1

3
,
1

3

〉

L

⊗
∣∣∣∣0,

1

3
,
1

3
,
1

3

〉

R

+

∣∣∣∣0,−
1

3
,−1

3
,−1

3

〉

L

⊗
∣∣∣∣0 − 1

3
− 1

3
− 1

3

〉

R

]
, (2.9)

respectively, from the k = 1, 2 twisted NS-NS sector and
[∣∣∣∣

1

2
,−1

6
,−1

6
,−1

6

〉

L

⊗
∣∣∣∣−

1

2
,−1

6
,−1

6
,−1

6

〉

R

+

∣∣∣∣−
1

2
,
1

6
,
1

6
,
1

6

〉

L

⊗
∣∣∣∣
1

2
,
1

6
,
1

6
,
1

6

〉

R

]
(2.10)

respectively, from the k = 1, 2 twisted R-R sector. We thus get six chiral multiplets from

the untwisted NS-NS sector and three from the untwisted R-R sector, adding up to nine

chiral multiplets in total [33]. The remaining state from equation (2.8) pairs up with the

the four-dimensional dilaton to form an additional dilaton multiplet. Furthermore, the

NS-NS and R-R twisted sectors together contribute one chiral multiplet. As there is no

vector multiplet, all the D0-branes (including the fractional branes) are projected out by

the orientifolding. We shall confirm this from the analysis of the open string states in the

following sections.

3. The crosscap state

In order to study the D-branes in the presence of the orientifold plane O6 in the model at

hand we need to study the open descendants of our model. This involves constructing the

crosscap state, corresponding to the orientifold, and the boundary states corresponding to

the D-branes. These are the states of open strings in the closed channel, also known as the

direct or tree channel.

In this section we construct the crosscap state for the model at hand. The boundary

states will be discussed in the following section. A simplification in the construction of the

crosscap state in this model ensues from the fact that the amplitudes can be obtained from

crosscap states which does not have a twisted sector [32]. In order to illustrate this let us

consider the Klein bottle amplitude K. For a general G ∼= �N the Klein bottle amplitude

is given by

K =
1

N
Tr

[
Ω · R · (−1)FL · (1 + g + · · · + gN−1)PqHc

]
(3.1)

in the NS-NS or R-R sectors. However, from the action of the group G given in the previous

section we find that the generators satisfy

Θgk = gN−kΘ, (3.2)

– 6 –
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where we introduced Θ = Ω · R · (−1)FL for typographic ease. Now, since the Hamiltonian

is invariant under the action of the group G, the energy eigenstates of the system are also

eigenstates of the elements of G. Let us fix a mutually orthogonal set of bases of such

states, {|m〉 |m = 0, . . . , N − 1}, satisfying

gk |m〉 = e
2πimk

N |m〉 , (3.3)

for k = 0, . . . , N −1. Hence the trace in equation (3.1) becomes a sum over the expectation

values in these states. With these states we derive

〈m |ΘgkPqHc |m〉 = e
2πikm

N 〈m |ΘPqHc |m〉 , (3.4)

and

〈m | gN−kΘPqHc |m〉 = e−
2πikm

N 〈m |ΘPqHc |m〉 , (3.5)

which have to be equal, by (3.2), thereby implying

〈m |ΘPqHc |m〉 sin

(
2πkm

N

)
= 0, (3.6)

for non-zero k and m. For k = 0 or m = 0 this equation collapses to an identity. Conse-

quently, the Klein bottle amplitude (3.1) becomes

K =
1

N

N−1∑

k,m=0

〈m|ΘgkPqHc |m〉

=
1

N

N−1∑

k,m=0

e2πikm/N 〈m|ΘPqHc |m〉,
(3.7)

where we used the expression (3.4). Now, in (3.6), the first factor being independent on k,

for each non-zero m we can find at least one value of k in the range 0 < k ≤ N − 1, such

that the sine factor is non-vanishing. Hence, the amplitude 〈m |ΘPqHc |m〉 vanishes for

all non-zero m. 4 Thus, finally, the Klein bottle amplitude becomes

K =
1

N

N−1∑

k=0

〈0|ΘPqHc |0〉

= 〈0|ΘPqHc |0〉.
(3.8)

We have thus re-written the Klein bottle amplitude without the gk-twisted open string

states, with no gk left in the expression. This implies that in the tree channel the Klein

bottle amplitude can be obtained from the untwisted crosscap state alone [32, 33, 33].

However, as we shall discuss in the following section, the D-brane boundary states in the

closed string picture do contain twisted pieces.

4We thank the referee for raising this point.
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Let us now write down the equations satisfied by the crosscap state [52 – 54]. These

are obtained by twisting the periodic boundary conditions of the closed string fields by the

orbifold as well as orientifold action as,

(XM (σ) − g(k)XM (σ + π))) |C6; η 〉 = 0,

(∂τXM (σ) + g(k)∂τXM (σ + π)) |C6; η 〉 = 0, (3.9)

(ψM (σ) + iη g(k)ψ̃M (σ + π, 0)) |C6; η 〉 = 0,

valid at τ = 0, where M = 0, . . . , 9, g(k) is as defined in equation (2.4) and C6 designates

the O6-plane. Such a crosscap state was first discussed in [39, 40] 5 . The crosscap state is

labeled by the spin structure η. The above equations are valid both in the NS-NS and the

R-R sector.

In order to obtain the crosscap state as a solution to the equations (3.9) it is convenient

to rewrite these equations in terms of the oscillators. In both the NS-NS and the R-R sectors

these equations lead to

(zi
0 − e2πikvizi

0) |C6; p, η 〉 = 0, (3.10)

(pi + e−2πikvipi) |C6; p, η 〉 = 0, (3.11)

(αµ
n + eiπnα̃µ

−n) |C6; p, η 〉 = 0, (3.12)

(αi
l + e−iπle2πikvi α̃i−l) |C6; p, η 〉 = 0, (αi

l + e−iπle−2πikvi α̃i
−l) |C6; p, η 〉 = 0, (3.13)

in terms of the bosonic coordinates, momenta and oscillators described in the appendix.

Similarly, the equations for the fermionic oscillators are,

(ψµ
r + iηe−iπrψ̃µ

−r) |C6; p, η 〉 = 0, (3.14)

(Ψi
r + iηe−iπre2πikviΨ̃i−r) |C6; p, η 〉 = 0, (Ψi

r + iηe−iπre−2πikviΨ̃i
−r) |C6; p, η 〉 = 0,

(3.15)

where p is used to designate the complex momenta pi in the three internal directions of

the
�3 and their complex conjugates, pi, with i = 1, 2, 3 and η = ±1. Equations (3.10)

– (3.15) can be solved to yield a coherent state for the crosscap as,

|C6; p, η 〉 = exp
(
−

∑

µ=0,3
l∈�

1

n
(−1)nαµ

−nα̃µ
−n − iη

∑

µ=0,3
r>0

e−iπrψµ
−rψ̃

µ
−r

−
∑

i=1,2,3
l∈�+

eiπl

l

(
e−2πikviαi

−lα̃
i
−l + e−iπle2πikviαi−lα̃i−l

)

− iη
∑

i=1,2,3
r>0

e−iπr
(
e−2πikviΨi

−rΨ̃
i
−r + e2πikviΨi−rΨ̃i−r

))
|C6; p, η 〉(0)

(3.16)

5For covariant formulation of crosscaps in Type I strings, see [53, 55] and for crosscaps in asymmetric

orientifold theory, see [56].
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where |C6, p, η 〉(0) denotes the Fock space ground state which is unique in the NS-NS sector

and is independent of η. The ground state is, however, degenerate in the R-R sector and

depends on η. Hence in considering the GSO projection and the orientifolding it will be

convenient to treat the NS-NS and R-R sectors separately.

NS-NS sector

Let us first discuss the projections on the crosscap state in the NS-NS sector to obtain the

invariant state.

3.0.1 GSO Projection

The NS-NS vacuum is chosen to be odd under the GSO projection. The form of the GSO

projectors written in (2.6) are deduced from

(−1)F = −(−1)
P

r∈�+1
2
[
P

µ ψµ
−rψµ

r +
P3

i=1(Ψi
−rΨi

r+Ψi
−rΨi

r)]
,

(−1)
eF = −(−1)

P
r∈�+1

2
[
P

µ
eψµ
−r

eψµ
r +

P3
i=1(eΨi

−r
eΨi

r+eΨi
−r

eΨi
r)]

,

(3.17)

in terms of the oscillators in the left- and right-moving sectors. Their action on the ground

state is given by

(−1)F |p〉(0)NSNS = (−1)
eF |p〉(0)NSNS = − |p〉(0)NSNS , (3.18)

where we refrain from mentioning the spin structure explicitly, since the ground state does

not depend on it. The above equation implies

(−1)F |C6; p, η 〉NSNS = (−1)
eF |C6; p, η 〉NSNS = − |C6; p,−η 〉NSNS . (3.19)

Thus the GSO-invariant state in the NS-NS sector is,

|C6; p〉NSNS =
1√
3

NNSNS
C√

2
· 1√

2

[
|C6; p,+〉NSNS − |C6; p,−〉NSNS

]
, (3.20)

where NNSNS
C is the normalization of the NS-NS part of the crosscap. We have separated

out a factor of 1√
2

from the normalization factor to make sure that it correctly reproduces

the projector due to orientifold in the open string channel. The second factor, as usual,

is for generating the correct GSO projector in the open channel. The NS-NS part of the

spatially localized crosscap is obtained by integrating this invariant state over the internal

momenta subject to the constraints (3.11). Thus, the position eigenstate corresponding to

crosscap in the untwisted NS-NS sector is

|C6 〉NSNS =

∫ 3∏

i=1

dpidpiδ(pi + e2πikvipi) δ(zi
0 − e2πikvizi

0) |C6; p〉NSNS (3.21)

3.0.2 Orientifolding

Considering the orientifolding on the crosscap state constructed above, let us first note

that (−1)FL acts trivially on the NS-NS ground state |p〉(0)NSNS, which is a spacetime scalar.
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The momenta and the coordinates in the internal directions transform under orientifolding

as

pi 7−→ e2πikvipi, pi 7−→ e−2πikvipi, zi
0 7−→ e2πikvizi

0, zi
0 7−→ e−2πikvizi

0. (3.22)

Since the vertex operator for the NS-NS ground state carrying momenta only along the

internal directions

ei
P

9
m=4

PmXm
= e

i
2

P
3
i=1

(piZi+piZi) (3.23)

is invariant, the NS-NS ground state |p〉(0)NSNS is invariant under the orientifolding. Further,

the oscillators transform as

αµ
n 7−→ eiπnα̃µ

n, α̃µ
n 7−→ e−iπnαµ

n, ψµ
r 7−→ eiπrψ̃µ

r , ψ̃µ
r 7−→ −e−iπrψµ

r ,

αi
l 7−→ eiπle2πikvi α̃i

l , αi
l 7−→ eiπle−2πikviα̃i

l , α̃i
l 7−→ e−iπle2πikviαi

l , α̃i
l 7−→ e−iπle−2πikviαi

l ,

Ψi
r 7−→ eiπre2πikviΨ̃i

r, Ψi
r 7−→ eiπre−2πikviΨ̃i

r, Ψ̃i
r 7−→ −e−iπre2πikviΨi

r,

Ψ̃i
r 7−→ −e−iπre−2πikviΨi

r. (3.24)

under orientifolding. The exponential factor in equation (3.16) is invariant under g(k).

Hence the state |C6; p, η 〉NSNS,U in equation (3.16) is invariant under the orientifold group.

The measure as well as the delta-function in (3.21) is invariant under g(k). Hence the

crosscap state in NS-NS untwisted sector obtained in equation (3.21) is invariant under G.

R-R sector

Let us now turn to the R-R sector. Unlike its NS-NS counterpart, the ground state in

the untwisted R-R sector is degenerate. Let us first discuss these degenerate states. It is

convenient to write the zero mode operators in the creation-annihilation basis of the so(8)

Clifford algebra.

Γ0,± =
1√
2
(ψ0

0 ± iψ3
0) , Γi,± =

1√
2
(ψ2i+2

0 ± iψ2i+3
0 ), i = 1, 2, 3 (3.25)

for the left-moving states and similarly for right-moving ones, mutatis mutandis. These

satisfy the anti-commutation relations,

{Γa,+,Γb,−} = δab, {Γa,±,Γb,±} = 0, (3.26)

where a, b = 0, 1, 2, 3. The untwisted R-R ground states are defined in terms of these

operators as

(Γ0,− + iηΓ̃0,−) |p, η 〉(0)RR = 0, (Γi,− + iηΓ̃i,+) |p, η 〉(0)RR = 0. (3.27)

The ground states may also be chosen so that all the signs in Γ± in this equation are

reversed. However, the present choice is the one that is in harmony with the corresponding

equations for the non-zero modes, (3.14)–(3.15). The R-R ground state is chosen to be

|C6; p, η 〉(0)RR = exp
[
− iη

(
Γ0,+Γ̃0,− +

∑

i

Γi,+Γ̃i,+
)]

|− − −−〉L ⊗ |+ −−−〉R

− exp
[
− iη

(
Γ0,−Γ̃0,+ +

∑

i

Γi,−Γ̃i,−)]
|+ + ++〉L ⊗ |− + ++〉R ,

(3.28)
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where |±,±,±,±〉L,R are as defined in § 2.1 and

Γa,± |±,±,±,±〉L = Γ̃a,± |±,±,±,±〉R = 0. (3.29)

Let us now discuss the GSO and the orientifold projections on the ground state and verify

that it is invariant under these operations.

3.0.3 GSO Projection

In the R-R sector the GSO operator (2.6) acts as the chirality operator on the zero modes,

namely,

(−1)F◦ = Γ11 =
∏

0,3,...,9

√
2ψM

0 (3.30)

in the left moving sector and

(−1)
eF
◦ = Γ̃11 =

∏

0,3,...,9

√
2ψ̃M

0 (3.31)

in the right-moving sector. Their respective actions on the ground states, therefore, are

given as

(−1)F◦ |C6; p, η 〉(0)RR = − |C6; p,−η 〉(0)RR , , (−1)
eF
◦ |C6; p, η 〉(0)RR = |C6; p,−η 〉(0)RR . (3.32)

The form of the GSO operator on the non-zero modes becomes

(−1)F• = (−1)
P

r∈�\{0}[
P

µ ψµ
−rψµ

r +
P

3
i=1

(Ψi
−rΨi

r+Ψi
−rΨi

r)],

(−1)
eF
• = (−1)

P
r∈�\{0}[

P
µ

eψµ
−r

eψµ
r +

P
3
i=1

(eΨi
−r

eΨi
r+eΨi

−r
eΨi

r)].
(3.33)

They leave the ground states unaltered. Moreover, since the coherent state in equa-

tion (3.16) contains an odd number of fermion oscillators from the non-zero mode sector,

(−1)F• and (−1)
eF
• act only by flipping the sign of η in the exponential. The total GSO

projection operator in the R-R sector, obtained by combining the two parts, namely,

(−1)F = (−1)F◦ (−1)F• , (−1)
eF = (−1)

eF
◦ (−1)

eF
• , (3.34)

act on the coherent states as,

(−1)F |C6; p, η 〉RR = − |C6; p,−η 〉RR , (−1)
eF |C6; p, η 〉RR = |C6; p,−η 〉RR . (3.35)

Therefore, the GSO-invariant state in the R-R sector is given by,

|C6; p 〉RR =
1√
3

NRR

√
2

· 1√
2

[
|C6; p,+〉RR + |C6; p,−〉RR

]
, (3.36)

where NRR
C is the normalization of the R-R part of the crosscap.
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3.0.4 Orientifolding

The action of the orientifold group on the R-R ground states are given in (2.3). The

corresponding action on the Γ-matrices is given by

Γ0,± 7−→ Γ̃0,±, Γ̃0,± 7−→ −Γ0,±, Γi,± 7−→ Γ̃i,∓, Γ̃i,± 7−→ −Γi,∓. (3.37)

From equation (3.28) we see that the coherent state |C6; p, η 〉(0)RR is invariant under the

orientifolding by G. Finally, using the same measure used in equation (3.21) for constructing

position the eigenstate for NS-NS crosscap, we obtain the R-R part of the crosscap state

|C6 〉RR =

∫ 3∏

i=1

dpidpiδ(pi + e2πikvipi) δ(zi
0 − e2πikvizi

0) |C6; p〉RR (3.38)

Finally, collecting the contributions from both the NS-NS and the R-R sectors in equation

. (3.21) and (3.38) respectively, the crosscap state invariant under GSO projection and

orientifolding is

|C6 〉 =
1√
2

[
|C6 〉NSNS + |C6 〉RR

]
. (3.39)

This crosscap represents a canonical O6-plane i.e. which carries negative D6-brane charge.

The sign is fixed by choosing NRR
C in (3.36) properly.

4. D-brane boundary state

Let us now proceed to discuss the construction of boundary states of the D0-branes and

the D-instanton in the present model. The boundary states for the D0-branes are obtained,

again, by solving an appropriate set of boundary conditions obtained in the world-sheet

theory. The boundary state for the D-instanton is obtained from these by analytic contin-

uation to an Euclidean time.

4.1 D0-brane

The boundary states of D0-branes has been worked out in ref. [3] in great detail. We briefly

review their construction here. Let us begin with the boundary state for the D0-branes.

The boundary conditions satisfied by the D0-branes are

∂τX0(σ) |B0〉 = 0, ∂σX±(σ) |B0〉 = 0, ∂σXm(σ) |B0〉 = 0, (4.1)

(ψ0 + iηψ̃0)(σ) |B0〉 = 0, (ψ± − iηψ̃±)(σ) |B0〉 = 0, (ψm − iηψ̃m)(σ) |B0〉 = 0,

(4.2)

for the space-time components of the bosonic and fermionic fields in the external four

dimensions and

∂σZi(σ) |B0〉 = 0, ∂σZi(τ = 0, σ) |B0〉 = 0, (4.3)

(Ψi − iηΨ̃i)(σ) |B0〉 = 0, (Ψi − iηΨ̃i(σ)) |B0〉 = 0, (4.4)
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for the internal components, where m = 0, 3, i = 1, 2, 3 and we have suppressed the

temporal coordinate τ of the world-sheet from the notation. All the equations are at

τ = 0. These equations are valid both for the NS-NS and the R-R sector. As in the last

section it is convenient to solve these equations in terms of the oscillators and momenta.

The coherent states in the NS-NS and the R-R sectors are similar, except for the grading

of the fermionic oscillators in the internal directions. In the NS-NS sector the index r of

these oscillators, Ψi
r, are half-integral, taking values in � + 1/2, while in the R-R sector

they are integral, taking values in �. However, formulas in the untwisted and the twisted

sectors are rather different. So let us consider them in turn.

Untwisted sector

In terms of oscillators the equations for the untwisted NS-NS and R-R sectors become

P 0 |B0〉 = 0, (4.5)

(α0
l + α̃0

−l) |B0〉 = 0, (α±
l − α̃±

−l) |B0〉 = 0, (αm
l − α̃m

−l) |B0〉 = 0, (4.6)

(ψ0
r + iηψ̃0

−r) |B0〉 = 0, (ψ±
r − iηψ̃±

−r) |B0〉 = 0, (ψm
r − iηψ̃m

−r) |B0〉 = 0, (4.7)

in the external four-dimensional part and

(αi
l − α̃i

−l) |B0〉 = 0, (αi
l − α̃i

−l) |B0〉 = 0, (4.8)

(Ψi
r − iηΨ̃i

−r) |B0〉 = 0, (Ψi
r − iηΨ̃i

−r) |B0〉 = 0. (4.9)

for the six-dimensional internal ones. From the equations (4.5)–(4.9) we observe that the

momenta along all the Dirichlet directions, including the light-cone directions, P 3, P±

and the momenta of the internal directions pi, pi as well as the spin structure η are the

quantum numbers labelling the boundary states of the D0-brane and hence |B0 〉 stands

for
∣∣P±, P 3, p

〉
NSNS

RR

, η in the untwisted sector.

A coherent state for the D0-brane is obtained by solving (4.5)–(4.9). The coherent

states in the untwisted NS-NS and R-R sectors are built from the respective ground states.

The ground state in the NS-NS sector is unique, carrying momenta P±, P 3, pi and pi and

is independent of the spin structure. Thus, the contribution from the untwisted NS-NS

sector to the coherent state is

∣∣B0;P±, P 3, p, η
〉
NSNS,U

= exp

(∑

l∈�

1

l
(−α0

−lα̃
0
−l + α3

−lα̃
3
−l) +

∑

i=1,2,3
l∈�

1

l
(αi

−lα̃
i
−l + αi

−lα̃
i
−l)

+ iη
∑

r∈�+ 1

2

(−ψ0
−rψ̃

0
−r + ψ3

−rψ̃
3
−r) + iη

∑

i=1,2,3
r∈�+1/2

(Ψi
−rΨ̃

i
−r + Ψi

−rΨ̃
i
−r)

)

∣∣B0;P±, P 3, p
〉(0)

NSNS,U
,

where
∣∣B0;P±, P 3, p

〉(0)

NSNS,U
denotes the ground state in the untwisted NS-NS sector. The

R-R ground states are degenerate, carrying momenta only along the extrenal light-cone
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directions and X3, contributing

∣∣B0;P±, P 3, η
〉
RR,U

= exp

(∑

l∈�

1

l
(−α0

−lα̃
0
−l + α3

−lα̃
3
−l) +

∑

i=1,2,3
l∈�

1

l
(αi

−lα̃
i
−l + αi

−lα̃
i
−l)

+ iη
∑

r∈�
(−ψ0

−rψ̃
0
−r + ψ3

−rψ̃
3
−r) + iη

∑

i=1,2,3
r∈�

(Ψi
−rΨ̃

i
−r + Ψi

−rΨ̃
i
−r)

) ∣∣B0;P±, P 3, η
〉(0)

RR,U
,

(4.10)

to the coherent state, where
∣∣B0;P±, P 3, η

〉(0)

RR,U
denotes the ground state in the untwisted

R-R sector, given by [3],
∣∣B0;P±, P 3, p, η

〉(0)

RR,U
= exp

[
iη(−Γ0,+Γ̃0,+ +

∑

i

Γi,+Γ̃i,−)
]
|− − −−〉L ⊗ |− + ++〉R .

(4.11)

We now go on to consider the GSO projection and the orientifolding on the boundary

states as we have done for the crosscap state in the preceding section.

4.1.1 GSO projection

Using the GSO projection operator from (2.6), we obtain the GSO-invariant combination

of the boundary state in the untwisted NS-NS sector as,
∣∣D0;P±, P 3, p

〉
NSNS,U

= (4.12)

1√
3

NNSNS,U
0√

2
· 1√

2

[ ∣∣B0;P±, P 3, p,+
〉
NSNS,U

−
∣∣B0;P±, P 3, p,−

〉
NSNS,U

]
,

while the GSO-invariant state in the untwisted R-R sector is found to be

∣∣D0;P±, P 3
〉
RR,U

=
1√
3

NRR,U
0√

2
· 1√

2

[ ∣∣B0;P±, P 3,+
〉
RR,U

+
∣∣B0;P±, P 3,−

〉
RR,U

]
.

(4.13)

Finally, the position eigenstates are obtained by integrating on the available momenta.

Assuming these fractional branes to be localized at the origin of the internal space which

is also the location of orbifold singularity, the postion eigenstates in the NS-NS and the

R-R sectors are, respectively,

|D0〉NSNS,U =

∫
dP+ dP− dP 3

3∏

i=1

dpidpi
∣∣D0;P±, P 3, p

〉
NSNS,U

(4.14)

|D0〉RR,U =

∫
dP+ dP− dP 3

∣∣D0;P±, P 3
〉
RR,U

(4.15)

We have thus obtained the contributions to the boundary state of the D0-brane from the

untwisted NS-NS and R-R sectors. The untwisted part of the D0-brane boundary state in

the orbifold theory is

|D0〉Uorb =
1√
2

[
|D0〉NSNS,U + |D0〉RR,U

]
(4.16)

Having obtained the GSO-invariant untwisted state for the D0-brane in the orbifold theory,

let us now consider orientifolding them.
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4.1.2 Orientifolding

From the action given in (2.6) for the states, we find that the NS-NS part remains invariant

under the orientifolding. In the R-R sector, the exponential factor remains unaltered, while

the ground state (4.13) flips sign. Hence the orientifold invariant untwisted part is obtained

by taking a linear sum of brane and anti-brane boundary states. So the untwisted part of

the D0-brane boundary state in the orientifold theory looks like

|D0〉Uorientifold =
√

2 |D0〉NSNS,U (4.17)

Hence it looks a like a non-BPS fractional D0-brane.

Twisted sectors

Let us now consider the contributions from the twisted sectors. By substituting the expan-

sions (A.6) and (A.13) in (4.1) — (4.4) we obtain the boundary conditions to be satisfied

by the k-th twisted sector in terms of the oscillators as,

P 0 |B0; k 〉 = 0 (4.18)

(α±
l − α̃±

−l) |B0; k 〉 = 0, (α0
l + α̃0

−l) |B0; k 〉 = 0, (αµ
l − α̃µ

−l) |B0; k 〉 = 0, (4.19)

(αi
l+kvi

− α̃i
−l−kvi

) |B0; k 〉 = 0, (αi
l−kvi

− α̃i
−l+kvi

) |B0; k 〉 = 0, (4.20)

for the bosonic oscillators and

(ψ±
r − iηψ̃±

−r) |B0; k 〉 = 0, (ψ0
r + iηψ̃0

−r) |B0; k 〉 = 0, (ψ3
r − iηψ̃3

−r) |B0; k 〉 = 0,

(4.21)

(Ψi
r+kvi

− iηΨ̃i
−r−kvi

) |B0; k 〉 = 0, (Ψi
r−kvi

− iηΨ̃i
−r+kvi

) |B0; k 〉 = 0, (4.22)

for the fermionic oscillators, where |B0; k 〉 represents the boundary state in the k-th twisted

sector. In the R-R sector r is an integer in equations (4.21) and (4.22), while it is half-

integral in the NS-NS sector.

A coherent state for |B0; k 〉 is constructed from the twisted sector ground states. The

twisted NS-NS and R-R ground states are the same as the ones used in constructing the

crosscap state, with degenerate twisted R-R ground states. The contribution of the twisted

sector |B0; k 〉 to the boundary state is

∣∣B0;P±, P 3, η; k
〉
NSNS,T

=

exp

[
∑

l∈�

1

l
(−α0

−lα̃
0
−l + α3

−lα̃
3
−l) + iη

∑

r∈�+1/2

(−ψ0
−rψ̃

0
−r + ψ3

−rψ̃
3
−r)

+
∑

i=1,2,3
l∈�

(
1

l − kvi
αi
−l+kvi

α̃i
−l+kvi

+
1

l + kvi
αi
−l−kvi

α̃i
−l−kvi

)

+ iη
∑

i=1,2,3
r∈�+1/2

(
Ψi

−r+kvi
Ψ̃i

−r+kvi
+ Ψi

−r−kvi
Ψ̃i

−r−kvi

)]
∣∣B0;P±, P 3; k

〉(0)

NSNS,T
,

(4.23)
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from the NS-NS sector and

∣∣B0;P±, P 3, η; k
〉
RR,T

= exp

[
∑

l∈�

1

l
(−α0

−lα̃
0
−l + α3

−lα̃
3
−l) + iη

∑

r∈�
(−ψ0

−rψ̃
0
−r + ψ3

−rψ̃
3
−r)

+
∑

i=1,2,3
l∈�

(
1

l − kvi
αi
−l+kvi

α̃i
−l+kvi

+
1

l + kvi
αi
−l−kvi

α̃i
−l−kvi

)

+ iη
∑

i=1,2,3
r∈�

(
Ψi

−r+kvi
Ψ̃i

−r+kvi
+ Ψi

−r−kvi
Ψ̃i

−r−kvi

) ]
∣∣B0;P±, P 3, η; k

〉(0)

RR,T
,

(4.24)

from the R-R sector. The ground states are

∣∣B0;P±, P 3; k = ±1
〉(0)

NSNS,T
=

∏

i

σi
±σ̃i

±

∣∣∣∣0,±
1

3
,±1

3
,±1

3
,

〉

L

⊗
∣∣∣∣0,±

1

3
,±1

3
,±1

3
,

〉

R

(4.25)

∣∣B0;P±, P 3; k = ±1
〉(0)

RR,T
=

∏

i

σi
k,±σ̃i

k,±

∣∣∣∣∓
1

2
,±1

6
,±1

6
,±1

6
,

〉

L

⊗
∣∣∣∣∓

1

2
,±1

6
,±1

6
,±1

6
,

〉

R

(4.26)

4.1.3 GSO projection

The GSO-invariant states are given by

∣∣D0;P±, P 3; k
〉

NSNS,T
RR,T

= (4.27)

1√
3

NT
NSNS,T
RR,T√
2

· 1√
2

[ ∣∣B0;P±, P 3,+; k
〉

NSNS,T
RR,T

∓
∣∣B0;P±, P 3,−; k

〉
NSNS,T
RR,T

]
,

where the upper and lower signs are for NS-NS and R-R sectors respectively.

The contribution to the boundary state of the D0-brane from the k-th twisted sector

is given by the position eigenstate obtained by integrating over the transverse momenta as,

|D0; k 〉NSNS,T
RR,T

=

∫
dP+ dP− dP 3

∣∣D0;P±, P 3; k
〉

NSNS,T
RR,T

(4.28)

So the twisted part of the D0-brane in the orbifold theory is

|D0〉Torb =
1√
2

∑

k=±1

[
εk
1ε

k
2 |D0; k 〉NSNS,T + εk

1 |D0; k 〉RR,T

]
, (4.29)

where εk
i = ±1 for i = 1, 2 and k = ±1, εk

1 denotes the twisted R-R charges of these branes

under twisted R-R field from k-th sector. Finally, εk
1ε

k
2 denote the phase of the untwisted

NS-NS sectors [57, 61].
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4.1.4 Orientifolding

The orientifolding operation keeps the part inside the exponential in equation . (4.23)

and (4.24) invariant. Moreover, the twisted NS-NS ground state turns out to be invariant

in both k = ±1 sectors. However, as in the untwisted sector, the twisted R-R sector ground

states picks up a minus sign. So the orientifold invariant twisted part of the D0-brane is

the sum of brane and anti-bane system.

|D0〉Torientifold =
√

2
∑

k=±1

εk
1ε

k
2 |D0; k 〉NSNS,T (4.30)

Therefore, the actual boundary state of the D0-brane surviving orientifold projection do

not have any R-R part. It is given by the sum of (4.17) and (4.30),

|D0〉orientifold = |D0〉Uorientifold + |D0〉Torientifold

=
√

2

[
|D0〉NSNS,U +

∑

k=±1

εk
1ε

k
2 |D0; k 〉NSNS,T

]
(4.31)

This is consistent with the fact that there is no one-form R-R field in the closed string

spectrum.

4.2 D-instanton

In Type-IIA theory there is no BPS D-instanton state. We can always write down the

boundary state of a non-BPS D-instanton, which consists only of the NS-NS part. It can

be obtained by flipping the sign in front of the timelike oscillators in the expression of D0

boundary state. The untwisted part is

|D(−1), P, η 〉NSNS,U = exp




∑

l∈�
µ=0,3

1

l
αµ
−lα̃

µ
−l + iη

∑

r∈�+1
2

µ=0,3

(−)rψµ
−rψ̃

µ
−r

+
∑

i=1,2,3
l∈�+

1

l

(
αi
−lα̃

i−l + αi−lα̃
i
−l

)
+ iη

∑

i=1,2,3

r∈�+1
2

(
Ψi

−rΨ̃
i−r + Ψi−rΨ̃

i
−r

)

 |B−1, P 〉(0)NSNS .

(4.32)

Here, the metric along µ directions is Euclidean, δµν , µ, ν = 0, 3. Generically, in the

orbifold theory such a D-instanton will be sourced by twisted sector fields, so it also has a

twisted NS-NS part

∣∣D(−1), P±, Pµ, η
〉
NSNS,T

= exp

[
∑

l∈�

∑

µ=0,3

1

l
αµ
−lα̃

µ
−l + iη

∑

r∈�+1/2

∑

µ=0,3

ψµ
−rψ̃

µ
−r)

+
∑

i=1,2,3
l∈�

(
1

l − kvi
αi
−l+kvi

α̃i
−l+kvi

+
1

l + kvi
αi
−l−kvi

α̃i
−l−kvi

)

+ iη
∑

i=1,2,3
r∈�+1/2

(
Ψi

−r+kvi
Ψ̃i

−r+kvi
+ Ψi

−r−kvi
Ψ̃i

−r−kvi

) ]
∣∣P±, Pµ

〉(0)

NSNS,T
,

(4.33)
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The GSO-invariant boundary state for the D(−1)-brane is

|D(−1) 〉 =
1√
2

[
|D(−1)〉NSNS,U +

∑

k=±1

εk
1ε

k
2 |D(−1)〉NSNS,T

]
, (4.34)

where εk
i = ±1 for all k −±1 and i = 1, 2, as before and

|D(−1) 〉NSNS,U =
1√
3

NU
−1√
2

∫ 9∏

M=0

dPM 1√
2

[
|D(−1);P,+ 〉NSNS − |D(−1);P,−〉NSNS

]

(4.35)

and

|D(−1)〉NSNS,T =
1√
3

NT

√
2

∫
dP+dP−dP 0dP 3 1√

2

[ ∣∣D(−1), P±, Pµ; +
〉
NSNS,T

−
∣∣D(−1), P±, Pµ;−

〉
NSNS,T

]

(4.36)

Here N−1 is the normalization factor to be determined in a self-consistent way later6.

Obviously, this is not a stable D-instanton as it contains tachyon in its spectrum.

We shall be interested in a D-instanton whose boundary state does not have a coupling

to twisted NS-NS state [62, 63]. This can be obtained as a linear combination of two

D-instanton boundary states given in equation (4.34), with opposite coupling to twisted

NS-NS fields for each k.
˜|D(−1) 〉 = |D(−1)〉NSNS,U (4.37)

5. One loop open string amplitudes

Let us now proceed to compute the annulus and Möbius amplitudes. The D0-brane bound-

ary state, as given in equation (4.31), is obviously non-BPS and hence contains tachyon

in its spectrum. Moreover, since this boundary state is a sum of D0-D0-pair, this tachyon

is a complex field. Thequestion is whether the orientifold can get rid of it and make it

stable non-BPS D0-brane. We don’t expect that the orientifold projection can get rid of

two real tachyons, otherwise it would be a novel feature of having a theory with both BPS

D0-brane(bulk or non-fractional) and stable non-BPS fractional D0-branes. Unfortunately,

we could not prove it by a direct computation in open string language. However, boundary

state analysis of this section clearly indicates that the tachyon is not projected out in the

orientifold theory.

The absence of an R-R part in the boundary state of the D0-branes simplifies the

considerations as it now suffices to consider the NS-NS amplitudes only. Furthermore,

the crosscap state does not have a twisted piece. Hence, for twisted sectors the Möbius

amplitude vanishes.

6Since Type IIA D-instanton can be obtained from a D-instanton-anti-D-instanton pair in Type IIB and

modding it out by (−1)FL , we know that N−1 is
√

2-times bigger than the BPS D-instanton. We shall get

the same fact by demanding that it becomes stable in the orientifold theory.
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For D-instanton in (4.37), however, the open string amplitudes, annulus plus Möbius,

turns out to be free of tachyons.

Throughout this and following sections, t and ` will denote the tree (closed) and open

(loop) channel Euclidean time respectively. Similarly, q̃ = e−2πt and q = e−π` will denote

the tree (closed) and open (loop) channel modular parameters. The parameters t and l for

various geometries are related as follows [50]

t =





1/2` for Annulus,

1/8` for Möbius,

1/4` for Klein bottle.

(5.1)

5.1 D0-brane

We first compute the annulus and the Möbius amplitudes associated with the D0-brane. As

the results are different for untwisted and twisted sectors we discuss them separately. The

full D0-brane open string amplitudes is a sum of annulus and Möbius in both untwisted

and twisted sectors.

Untwisted sector

5.1.1 Annulus amplitude

As the D0-brane boundary states occur as in (4.17) and (4.12) we need the following

amplitudes

∞∫

0

dt NSNS,U 〈D0;+ | e−tHc |D0;+ 〉NSNS,U =

∞∫

0

dt NSNS,U 〈D0;−| e−tHc |D0;−〉NSNS,U

=
1

3
· 1

2
· 4 · (NNSNS,U

0 )2

2

∞∫

0

d`

2`
3

2

f3(q)
8

f1(q)8

∞∫

0

dt NSNS,U 〈D0;+ | e−tHc |D0;−〉NSNS,U =

∞∫

0

dt NSNS,U 〈D0;−| e−tHc |D0;+〉NSNS,U

=
1

3
· 1

2
· 4 · (NNSNS,U

0 )2

2

∞∫

0

d`

2`
3

2

f2(q)
8

f1(q)8
.

(5.2)

Using (5.2) we write the untwisted annulus amplitude of D0-brane in the orientifold

Aorientifold
0−0 =

∞∫

0

dt orientifold 〈D0 | e−tHc |D0〉orientifold

=
1

3
· 1

2
· 4 · (NNSNS,U

0 )2

2

∞∫

0

d`

2`
3

2

(
f3(q)

8

f1(q)8
− f2(q)

8

f1(q)8

)
.

(5.3)
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Since the numerical factors appearing in the above formulas are of different origins, we

have shown them explicitly, for example, the first factor of 1
3 is to reproduce the orbifold

projector correctly, the second 1
2 factor is due to the GSO and the third one is for the

orientifolding. Comparing this expression with the orbifold case as given in [3] we can see

that orientifolding takes away the contribution from R-R sector and thus it has a tachyonic

contribution which will otherwise be absent.

5.1.2 Möbius amplitude

The Möbius amplitude is obtained from two amplitudes, namely, the amplitude between

the crosscap and the D0-brane states with both having positive spin-structure,

∞∫

0

dt NSNS 〈C6; + |ΩR(−1)FLe−tHc |D0;+〉NSNS,U

=

∞∫

0

dt NSNS 〈C6;−|ΩR(−1)FLe−tHc |D0;−〉NSNS,U

=
1

3
· 1

2
· N

NSNS
c · NNSNS,U

0

2
· 2

∞∫

0

d`

2`
3

2

f3(q
2)4

f1(q2)4
,

(5.4)

and the amplitude in which the crosscap and the D0-brane have opposite spin-structures,

∞∫

0

dt NSNS 〈C6; + |ΩR(−1)FLe−tHc |D0;−〉NSNS,U

= NSNS 〈C6;−|ΩR(−1)FLe−tHc |D0;+〉NSNS,U

=
1

3
· 1

2
· N

NSNS
c · NNSNS,U

0

2
· 2

∞∫

0

d`

2`
3

2

f3(q
2)4

f1(q2)4
.

(5.5)

Since the D0-brane in the orientifold does not have an R-R part, the total untwisted D0-

brane Möbius amplitude

M0−0 =

∞∫

0

dt NSNS 〈C6 | e−tHc |D0〉NSNS,U =
1

3
· 1

2
· Nc · N0

2
· 2

∞∫

0

d`

2`
3

2

[f3(q
2)4

f1(q2)4
− f3(q

2)4

f1(q2)4

]

(5.6)

vanishes identically. Therefore, the tachyonic degree of freedom survives and makes the

D0-brane unstable in the untwisted sector.

Twisted sector

Since there is no contribution to the Möbius amplitude from the twisted sectors, as the

order of the orbifolding group is odd in the present case, the complete amplitude is given
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by the annulus. Moreover, the entire contribution comes from the twisted NS-NS sector.

Using the expressions

∞∫

0

dt NSNS,T 〈D0;+, k |e−tHc |D0;+, k 〉NSNS,T

=

∞∫

0

dt NSNS,T 〈D0;−, k | e−tHc |D0;−, k 〉NSNS,T

=
1

3
· 1

2
· 4 · (NNSNS,T

0 )2

2

∞∫

0

d`

2`
3

2

ϑ3(0|i`)
3∏

i=1

sin(πkνi)
ϑ3(kνi`|i`)
ϑ1(kνi`|i`)

∞∫

0

dt NSNS,T 〈D0;+, k |e−tHc |D0;−, k 〉NSNS,T

=

∞∫

0

dt NSNS,T 〈D0;−, k | e−tHc |D0;+, k 〉NSNS,T

=
1

3
· 1

2
· 4 · (NNSNS,T

0 )2

2

∞∫

0

d`

2`
3

2

ϑ2(0|i`)
3∏

i=1

sin(πkνi)
ϑ2(kνi`|i`)
ϑ1(kνi`|i`)

.

(5.7)

where k = ±1 correspond to the twisted sectors, we get the annulus amplitude

∞∫

0

dt NSNS,T 〈D0;T ; k | e−tHc |D0;T ; k 〉NSNS,T

=
1

3
· 1

2
· 4 · (NNSNS,T

0 )2

2

∞∫

0

d`

2`
3

2

∑

k=±1

(
ϑ3(0|i`)

3∏

i=1

sin(πkνi)
ϑ3(kνi`|i`)
ϑ1(kνi`|i`)

−ϑ2(0|i`)
3∏

i=1

sin(πkνi)
ϑ2(kνi`|i`)
ϑ1(kνi`|i`)

)
,

(5.8)

from the twisted sector. Expanding in q we find that there are tachyonic contribution

which makes this boundary state unstable.

5.2 D-instanton

5.2.1 Annulus amplitude

As in D0-brane case, using standard procedure, we can work out the annulus amplitude

for D-instanton, using (4.35) and (4.37) as the boundary state.

A(−1)−(−1) =

∞∫

0

dt ˜〈D(−1) |e−tHc ˜|D(−1) 〉 =
1

3

∞∫

0

d`

2`

(NNSNS,U
−1 )2

2

[
f8
3 (q) − f8

2 (q)
]

f8
1 (q)

(5.9)
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5.2.2 Möbius amplitude

In order to calculate the Möbius amplitude associated with the D-instanton we need the

following expressions,
∞∫

0

dt NSNS 〈C6;±| e−tHc |D(−1),±〉NSNS,U = 2 i1/4

∞∫

0

d`

(2`)3/2
eiπ/4 f2

4 (iq)f3
3 (q2)

f2
2 (iq)f3

1 (q2)
,

∞∫

0

dt NSNS 〈C6;±| e−tHc |D(−1),∓〉NSNS,U = 2 i1/4

∞∫

0

d`

(2`)3/2
e−iπ/4 f2

3 (iq)f3
3 (q2)

f2
2 (iq)f3

1 (q2)
.

(5.10)

The total Möbius amplitude in this case is

M6−(−1) + M∗
6−(−1) =

1

3

∞∫

0

d`

2`

1

22

NNSNS
C NNSNS,U

−1

2
√

2

25 · 2√
2

i1/4

[
1√
2

(f2
4 (iq̃)f3

3 (q̃2)

f2
2 (iq̃)f3

1 (q̃2)
− f2

3 (iq̃)f3
3 (q̃2)

f2
2 (iq̃)f3

1 (q̃2)

)

+
i√
2

(f2
4 (iq̃)f3

3 (q̃2)

f2
2 (iq̃)f3

1 (q̃2)
+

f2
3 (iq̃)f3

3 (q̃2)

f2
2 (iq̃)f3

1 (q̃2)

)]

(5.11)

5.3 Analysis of D-instanton partition function for the tachyon

Since the D(−1)-brane is a non-BPS object, the open string spectra on it has no GSO

projection, i.e.

A(−1)−(−1) + M6−(−1) + M∗
6−(−1) =

1

3
· 1

2

∫
dl

2l

(
TrNS

[
(1 + ΩR(−1)FL)qHo

]

−
[
TrR(1 + ΩR(−1)FL)qHo

])
.

(5.12)

We can write this expression as a sum of two terms with opposite GSO projectors [68].

Thus

A(−1)−(−1) + M6−(−1) + M∗
6−(−1) =

1

3
· 1

2

∫
dl

2l
(ZNS+(q) + ZNS−(q) + ZR(q)), (5.13)

where

ZNS±(q) = TrNS

[(1 + ΩR(−1)FL)

2
(
1 ± (−1)F

2
)qHo

]
. (5.14)

Since the tachyon is odd under (−1)F , it lives in the sector with partition function ZNS−(q).

Similarly, we can know about the massless scalars, if we analyze ZNS+(q), as the latter are

(−1)F even. Let us now assume that7

NNSNS
c = ix. (5.15)

7The factor i in the normalization NNSNS
C should not be conjugated when considering the conjugate

crosscap state. This is a BPZ conjugation of CFT, not the standard quantum mechanical hermitian conju-

gation. See [57] for a discussion on this issue.
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From the annulus and Möbius amplitudes, given in equation (5.9) and (5.11), we now write
down the expression for ZNS±(q) and ZR(q).

ZNS−(q) =
(NNSNS,U

−1 )2

2

[f8
3 (q) + f8

4 (q)]

2f8
1 (q)

− i1/4 · xNNSNS,U
−1

2
√

2

[
f2
4 (iq)f3

3 (q2)

f2
2 (iq)f3

1 (q2)
+

f2
3 (iq)f3

3 (q2)

f2
2 (iq)f3

1 (q2)

]
, (5.16)

ZNS+(q) =
(NNSNS,U

−1 )2

2

[f8
3 (q) − f8

4 (q)]

2f8
1 (q)

+ i1/4 · xNNSNS,U
−1

2
√

2
i

[
f2
4 (iq)f3

3 (q2)

f2
2 (iq)f3

1 (q2)
− f2

3 (iq)f3
3 (q2)

f2
2 (iq)f3

1 (q2)

]
,

(5.17)

ZR(q) = − (NNSNS,U
−1 )2

2

f8
2 (q)

f8
1 (q)

. (5.18)

The normalization of the crosscap is known from the compact cousin of the model under

consideration [39],

x = 25/2. (5.19)

If we choose

NNSNS,U
−1 = 25, (5.20)

making an expansion of these partition functions for small q, we find that the tachyon gets

projected out in ZNS−(q)

ZNS−(q) ∼ 6q + O(q2). (5.21)

Similarly, we find

ZNS+(q) ∼ 10 + O(q). (5.22)

This reflects the fact that on this D-instanton world-volume we have ten massless modes

corresponding to the freedom of translating it along its ten transverse dimensions.

6. K-theory & orientifold

Having thus obtained the crosscap state and the D-brane boundary states let us now

discuss the K-theory associated with the orientifold model under consideration. The K-

groups yield the different charges of the branes via the Chern characters. D0-branes on

orbifolds can be identified as objects of the derived category of an Abelian category. The

latter can be described either as the category of coherent sheaves on
�2 or as the category

of representations of the quiver associated with
�2. These two definitions of the category

are relevant in two different regimes of the Kähler moduli space of the
�2. The coherent

sheaves portray the D0-branes on
�2 in the large volume region, while the representations

of the quiver limn them in the orbifold limit, wherein the volume of the
�2 shrinks [26, 3].

In either description, the different branes are given by the Grothendieck group K0 of

the Abelian category [66, 58]. For an Abelian category A, the equivalence classes of the

objects of A modulo the relation [X ′] = [X] + [X ′′], when the objects X,X ′,X ′′ form a

short exact sequence, 0 // X // X ′ // X ′′ // 0 , form an Abelian group, called

the Grothendieck group, denoted K0, of A. Here [X] denotes the class of an object in A.

The equivalence relation embodies the identification of anti-branes as objects shifted by a

unit grade in a complex relative to the objects corresponding to the branes.
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After orientifolding, however, the Grothendieck group falls inadequate to describe the

charges of the objects of the Abelian category, A. The charges now are given by the

Whitehead group of A, denoted K1. The classes of objects in the K1 group carry the

information of certain automorphisms of the objects in addition to the objects themselves.

Before presenting the definition of the K1 group, let us note the following from our earlier

discussions. We found that the boundary states of the D0-branes are invariant under

the orientifolding operation. Further, acting twice, the orientifolding yields the original

state back. Thus, given that each boundary state corresponds to an object in the Abelian

category A, it is natural to assume the existence of an automorphism, f of the objects of

A, such that f2 = 1. Since an Abelian category is idempotent complete and hence so is its

bounded derived category [70], this is a consistent assumption. In order to interpret this

automorphism physically, let us note that the CFT analysis points at the stable object on

the orientifold backgrounds being a D-instanton which are to be obtained through tachyon

condensation of the D0-brane. The latter was found to have tachyonic modes. This bears a

close resemblance to the orientifold of the Type-IIB theory, where the orientifold action is a

lone (−1)FL [58, 60, 61]. In this case a D8-brane appears through tachyon condensation of

a D9-brane. From this point of view the D8-brane has been interpreted as a pair consisting

of a vector bundle V and an automorphism α : V −→ V , where V and α is taken to

corresponds to the D9-brane and the tachyon, respectively. In the spirit of this analogy, in

the Type-IIA orientifold we can identify the tachyons associated with a D0-brane described

by an object X as an automorphism f : X −→ X and D-instantons as a pair (X, f). Thus,

the classes of D-branes relevant for our discussion will carry an extra label designating

the automorphism f. This leads us to consider the Whitehead group K1 of the Abelian

category [59, 60]. The Whitehead group K1 of the category A is defined to be an Abelian

group generated by equivalence classes [X,α], corresponding to the objects X of A, α being

an automorphism of X. The equivalence relations are,

❍ Additive: For any commutative diagram

0 // X ′ //

α′

²²

X //

α

²²

X ′′ //

α′′

²²

0

0 // X ′ // X // X ′′ // 0

(6.1)

in A, where the horizontal sequences are exact and the vertical morphisms are auto-

morphisms, we impose an equivalence relation,

[X,α] = [X ′, α′] + [X ′′, α′′] (6.2)

❍ Multiplicative: If α : X −→ X and β : X −→ X are automorphisms in of objects in

A, then we impose

[X,αβ] = [X,α] + [X,β]. (6.3)

Now, for the case at hand, the orientifolding operation lifts up to an automorphism f on A,

as alluded to above. Then, from equation (6.3) we obtain, 2[X, f] = [X, 1], which in turn
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yields

[X, f] = 0 mod 2,

since, again by equation (6.3), we have [X, 1] = 0, which can be seen by setting α = β = 1.

We conclude, therefore, that the Whitehead group K1 of the category of objects in the

orientifold background is isomorphic to �2. The �2 charge corresponding to K1 ∼ �2 is

topological and leads to the existence of a single �2-charged D-instanton, which we found

through the analysis of the boundary states above.

7. Discussions and conclusion

To conclude, we have discussed the boundary states in the spectrum of the Type-IIA

orientifold
�3/�3 · Ω · R · (−1)FL . We find that there is no vector multiplet in the closed

string massless spectrum. Further, the D0-branes are inflicted with tachyon and become

unstable. However, we found the existence of a D-instanton which is stable as the associated

tachyons are projected out due to orientifolding.

In spite of the presence of a massless modulus in the closed string spectrum of the

twisted NS-NS sector, in this article we refrain from presenting a geometric interpretation

of the objects in the aforementioned Abelian category, as the contribution of instantons

may develop a superpotential for this modulus [67] rendering the movement over the Kähler

moduli space obstructed.

We interpret the D-instanton alluded to above as being obtained through tachyon

condensation of the unstable D0-branes. We use the analogy with the mechanism by which

D8-branes come into being through tachyon condensation of D9-branes. The associated

K-group is given by Whitehead group of the category of D0-branes generated by objects

along with an automorphism of the object associated with the tachyon. Contrary to the

cases studied earlier in the literature, we assume a lift of the orientifolding on the objects

of the Abelian category of D-branes, rather than looking for a geometric realization the

target space. One advantage of this description of the K-group is that they are readily

generalizable to more exotic orbifolds and, perhaps, to the Calabi-Yau spaces.

However, let us note that the other way to look at the K-group is [58] by considering

the fact that the operation Ω · R · (−1)FL corresponds to interchanging (E,F ) with (F,E)

where E and F are vector bundles and E represents the complex conjugate of E. The

K-group is given by KR1
±(X) [58]. This has not been discussed much in the literature. It

will be interesting to compute this and compare with the results here.
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A. Notations & conventions

Here we explain the notations and conventions used in this article and present an inventory

of the formulas used. We use light-cone gauge throughout our discussion and double wick-

rotated the coordinates, as is customary. Thus, X0 −→ iX0 and X1 −→ iX1. Similarly

ψ0 −→ iψ0 and ψ1 −→ iψ1. The light-cone coordinates are taken to be X± = X1±X2 and

ψ± = ψ1 ± ψ2. We impose Dirichlet boundary conditions along the light-cone directions.

The external directions will be X0 and X3; both of which are taken to be euclidean, i.e.

the external metric is δµν . The coordinates X4, . . . ,X9 will be used to denote the internal�3 directions. We use indices M,N = 0, . . . , 9 for the ten-dimensional spacetime directions

and M̂ = 0, 3, . . . , 9 for indices excluding the light-cone directions, µ, ν = 0, 3 for external

indices, m,n = 4, . . . , 9 for internal real indices and i, i = 1, 2, 3 for complexified internal

indices. The worldsheet coordinates will be denoted by σ and τ and we use a Euclidean

metric on the worldsheet.

A.1 Mode Expansion

A.1.1 Bosonic oscillators

Light cone directions

X−(σ, τ) = x−
0 +

1

2π
P−τ +

i

2

∑

l∈�

1

l
α−

l e−il(τ+σ) +
i

2

∑

l∈�

1

l
α̃−

l e−il(τ−σ),

X+(σ, τ) = x+
0 + P+τ,

(A.1)

the latter implying

α+
0 = α̃+

0 = P+δn0 , α−
0 + α̃−

0 = P− (A.2)

Untwisted sector

The mode expansion of the Bosonic fields are

XM (σ, τ) = xM
0 + 2PM τ +

i

2

∑

l∈�

1

l
αM

l e−il(τ+σ) +
i

2

∑

l∈�

1

l
α̃M

l e−il(τ−σ), (A.3)

For m = 4, . . . , 9, let

1√
2
(X2i+2 + iX2i+3) = Zi 1√

2
(P 2i+2 + iP 2i+3) = pi i = 1, 2, 3 (A.4)

and similarly for right-movers, mutatis mutandis. Thus the mode expansions are given as

Zi(σ, τ) = zi
0 + 2piτ +

i

2

∑

l∈�

1

l
αi

le
−il(τ+σ) +

i

2

∑

l∈�

1

l
α̃i

le
−il(τ−σ),

Zi(σ, τ) = zi
0 + piτ +

i

2

∑

l∈�

1

l
αi

le
−il(τ+σ) +

i

2

∑

l∈�

1

l
α̃i

le
−il(τ−σ)

(A.5)
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Twisted sectors

The mode expansions in the twisted sectors, cooresponding to k = 1, 2 are

Xµ(σ, τ) =
i

2

∑

l∈�

1

l
αµ

l e−il(τ+σ) +
i

2

∑

l∈�

1

l
α̃µ

l e−il(τ−σ),

Zi(σ, τ) =
i

2

∑

l∈�

1

l + kvi
αi

l+kvi
e−i(l+kvi)(τ+σ) +

i

2

∑

l∈�

1

l − kvi
α̃i

l−kvi
e−i(l−kvi)(τ−σ),

Zi(σ, τ) =
i

2

∑

l∈�

1

l − kvi
αi

l−kvi
e−i(l−kvi)(τ+σ) +

i

2

∑

l∈�

1

l + kvi
α̃i

l+kvi
e−i(l+kvi)(τ−σ).

(A.6)

A.1.2 Fermionic oscillators

Light-cone directions

ψ+(σ, τ) = ψ̃+(σ, τ) = 0 ⇒ ψ+
r = ψ̃+

r = 0, (A.7)

ψ−(σ, τ) =
2

P+

∑

cM=0,3,...,9

ψ
cM∂+X

cM ⇒ ψ−
r =

1

P+

∑

cM=0,3,...,9

∑

s

α
cM
r−sψ

cM
s , (A.8)

ψ̃−(σ, τ) =
2

P+

∑

cM=0,3,...,9

ψ̃
cM∂−X

cM ⇒ ψ̃−
r =

1

P+

∑

cM=0,3,...,9

∑

s

α̃
cM
r−sψ̃

cM
s , (A.9)

where r, s ∈ � + 1
2(�) for NS(R)-sector and σ± = τ ± σ, ∂± = 1

2 (∂τ ± ∂σ).

Untwisted sector

The mode expansions of the left- and right-moving fermions are

ψM (σ, τ) =
∑

r

ψM
r e−ir(τ+σ) and ψ̃M (σ, τ) =

∑

r

ψ̃M
r e−ir(τ−σ), (A.10)

respectively, where r ∈ � + 1
2(�) for NS(R)-sectors and m = 4, . . . , 9. We define complex

fermionic fields,

Ψi =
1√
2
(ψ2i+2 + iψ2i+3), Ψi =

1√
2
(ψ2i+2 − iψ2i+3), (A.11)

where i = 1, 2, 3 and similarly Ψ̃i and Ψ̃i for right-movers. The mode expansion for the

complexified fermions can be derived from the earlier expressions as

Ψi(σ, τ) =
∑

r

Ψi
re

−ir(τ+σ), Ψi(σ, τ) =
∑

r

Ψi
re

−ir(τ+σ)

Ψ̃i(σ, τ) =
∑

r

Ψ̃i
re

−ir(τ−σ), Ψ̃i(σ, τ) =
∑

r

Ψ̃i
re

−ir(τ−σ)
(A.12)
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Twisted sectors

The mode expansions of the fermions in the k = 1, 2 twisted sectors are

ψµ(σ, τ) =
∑

r

ψµ
r e−ir(τ+σ), ψ̃µ

r (σ, τ) =
∑

r

ψ̃µ
r e−ir(τ−σ),

Ψi(σ, τ) =
∑

r

Ψi
r+kvi

e−i(r+kvi)(τ+σ), Ψi(σ, τ) =
∑

r

Ψi
r−kvi

e−i(r−kvi)(τ+σ), (A.13)

Ψ̃i(σ, τ) =
∑

r

Ψ̃i
r−kvi

e−i(r−kvi)(τ−σ), Ψ̃i(σ, τ) =
∑

r

Ψ̃i
r+kvi

e−i(r+kvi)(τ−σ).

Oscillator algebra

We use the following commutators and anti-commutators for the oscillators

[αµ
l , αν

l′ ] = [α̃µ
l , α̃ν

l′ ] = δl+l′,0 δµν , {ψµ
r , ψν

s } = {ψ̃µ
r , ψ̃ν

s } = δr+s,0 δµν , (A.14)

for the external directions and

[αi
l+kvi

, αj
l′−kvj

] = (l + kvi)δl+l′,0 δij , {Ψi
r+kvi

,Ψj
s−kvj

} = δr+s,0 δij , (A.15)

[α̃i
l−kvi

, α̃j
l′+kvj

] = (l − kvi)δl+l′,0 δij , {Ψ̃i
r−kvi

, Ψ̃j
r+kvj

} = δr+s,0 δij , (A.16)

for the internal directions.

A.2 Closed string hamiltonian

The closed string Hamiltonian in the untwisted sector is

Hu
c = π(P 2 + p2) + 2π

[ ∑

µ=0,3
n∈�+

(αµ
−nαµ

n + α̃µ
−nα̃µ

n) +
∑

µ=0,3
r>0

r(ψµ
−rψ

µ
r + ψ̃µ

−rψ̃
µ
r )

+
∑

i=1,...,3
n∈�+

(αi
−nαi

n + α̃i
−nα̃i

n) +
∑

i=1,...,3
r>0

r(Ψi
−rΨ

i
r + Ψ̃i

−rΨ̃
i
r)

]
+ 2πau ,

(A.17)

where au = −1 in the NS-sector and au = 0 in the R-R-sector. The fermionic mode-index

r ∈ �+ 1
2 (�) for NS(R)-sector and ~P and ~p are denote the external and internal momenta,

respectively. In the twisted sector, on the other hand, the closed string Hamiltonian as-

sumes the form

HT
c = πP 2 + 2π

[
(

∑

µ=0,3
n∈�+

(αµ
−nαµ

n + α̃µ
−nα̃µ

n) +
∑

µ=0,3
r>0

r(ψµ
−rψ

µ
r + ψ̃µ

−rψ̃
µ
r )

+
∑

i=1,...,3
n∈�

◦
◦(α

i
n+kvi

αi
−n−kvi

+ α̃i
n−kvi

α̃i
−n+kvi

) ◦
◦

+
∑

i=1,...,3
r>0

(r − kvi) ◦
◦(Ψ

i
r+kvi

Ψi
−r−kvi

+ Ψ̃i
r−kvi

Ψ̃i
−r+kvi

) ◦
◦

]
+ 2πaT ,

(A.18)

where aT is a constant arising from the normal ordering.
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A.3 The ϑ-functions and the f -functions

Let us list the ϑ-functions with characteristics for convenience [69],

ϑ

[
α

β

] (
ν
∣∣∣τ

)
= e2πiαβ q̂α2/2−1/24 η(τ)

∞∏

n=1

(
1 + q̂n−1/2+αe2πi(β+ν)

)(
1 + q̂n−1/2−αe−2πi(β+ν)

)
,

(A.19)

where q̂ = e2πiτ and one needs to choose α, β ∈ (−1/2, 1/2]. Here η(τ) is the Dedekind

η-function.

η(τ) = q̂1/24
∞∏

n=1

(1 − q̂n). (A.20)

The Jacobi ϑ-functions are given by the following ϑ-functions with characteristics

ϑ

[
1
2
1
2

]
(ν|τ) = ϑ1(ν|τ), ϑ

[ 1
2

0

]
(ν|τ) = ϑ2(ν|τ),

ϑ

[
0

0

]
(ν|τ) = ϑ3(ν|τ), ϑ

[
0
1
2

]
(ν|τ) = ϑ4(ν|τ).

(A.21)

We also use the following f -functions, related to the ϑ-functions [53, 50]

f1(q̂) = q̂1/12
∞∏

n=1

(1 − q̂2n), f2(q̂) =
√

2q̂1/12
∞∏

n=1

(1 + q̂2n), (A.22)

f3(q̂) = q̂−1/24
∞∏

n=1

(1 + q̂2n−1), f4(q̂) = q̂−1/24
∞∏

n=1

(1 − q̂2n−1). (A.23)

A.4 Modular S transformation

The behavior of the Dedekind’s η-function and the Jacobi ϑ-functions under the modular

S transformation is given by,

η

(
−1

τ

)
= (−iτ)−1/2η(τ), (A.24)

ϑ1

(
ν

τ
| − 1

τ

)
= −(−iτ)1/2eπiν2/τϑ1(ν|τ), (A.25)

ϑ2

(
ν

τ
| − 1

τ

)
= (−iτ)1/2eπiν2/τϑ4(ν|τ), (A.26)

ϑ3

(
ν

τ
| − 1

τ

)
= (−iτ)1/2eπiν2/τϑ3(ν|τ), (A.27)

ϑ4

(
ν

τ
| − 1

τ

)
= (−iτ)1/2eπiν2/τϑ2(ν|τ). (A.28)

The modular S transformation for the f -functions for a real (used for annulus) and an

imaginary (used for Möbius) arguments are,

A.4.1 Real arguments

f1(e
−πs) =

1√
s
f1(e

−π/s), f2(e
−πs) = f4(e

−π/s),

f3(e
−πs) = f3(e

−π/s), f4(e
−πs) = f2(e

−π/s).

(A.29)
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A.4.2 Imaginary arguments

f1(ie
−πs) =

1√
2s

f1(ie
−π/4s), f2(ie

−πs) = f2(ie
−π/4s),

f3(ie
−πs) = eiπ/8f4(ie

−π/4s), f4(ie
−πs) = e−iπ/8f3(ie

−π/4s).

(A.30)

References

[1] M.R. Douglas, Enhanced gauge symmetry in M(atrix) theory, JHEP 07 (1997) 004

[hep-th/9612126].

[2] D.-E. Diaconescu, M.R. Douglas and J. Gomis, Fractional branes and wrapped branes, JHEP

02 (1998) 013 [hep-th/9712230].

[3] D.-E. Diaconescu and J. Gomis, Fractional branes and boundary states in orbifold theories,

JHEP 10 (2000) 001 [hep-th/9906242].

[4] K. Mohri, Y. Onjo and S.-K. Yang, Closed sub-monodromy problems, local mirror symmetry

and branes on orbifolds, Rev. Math. Phys. 13 (2001) 675–715 [hep-th/0009072].

[5] D.-E. Diaconescu and M.R. Douglas, D-branes on stringy Calabi-Yau manifolds,

hep-th/0006224.

[6] S. Mukhopadhyay and K. Ray, Fractional branes on a non-compact orbifold, JHEP 07 (2001)

007 [hep-th/0102146].

[7] I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic,

JHEP 08 (2000) 015 [hep-th/9906200].

[8] P. Kaste, W. Lerche, C.A. Lutken and J. Walcher, D-branes on K3-fibrations, Nucl. Phys. B

582 (2000) 203 [hep-th/9912147].

[9] E. Scheidegger, D-branes on some one- and two-parameter Calabi-Yau hypersurfaces, JHEP

04 (2000) 003 [hep-th/9912188].

[10] S. Govindarajan, T. Jayaraman and T. Sarkar, Worldsheet approaches to D-branes on

supersymmetric cycles, Nucl. Phys. B 580 (2000) 519 [hep-th/9907131].

[11] S. Govindarajan, T. Jayaraman and T. Sarkar, On D-branes from gauged linear sigma

models, Nucl. Phys. B 593 (2001) 155 [hep-th/0007075].

[12] S. Govindarajan and T. Jayaraman, D-branes, exceptional sheaves and quivers on Calabi-Yau

manifolds: from Mukai to McKay, Nucl. Phys. B 600 (2001) 457 [hep-th/0010196].

[13] A. Tomasiello, D-branes on Calabi-Yau manifolds and helices, JHEP 02 (2001) 008

[hep-th/0010217].

[14] P. Mayr, Phases of supersymmetric D-branes on kaehler manifolds and the McKay

correspondence, JHEP 01 (2001) 018 [hep-th/0010223].

[15] S.K. Ashok, E. Dell’Aquila and D.-E. Diaconescu, Fractional branes in Landau-Ginzburg

orbifolds, Adv. Theor. Math. Phys. 8 (2004) 461 [hep-th/0401135].

[16] B. Ezhuthachan, S. Govindarajan and T. Jayaraman, A quantum McKay correspondence for

fractional 2p-branes on LG orbifolds, JHEP 08 (2005) 050 [hep-th/0504164].

[17] M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006

[hep-th/0002037].

– 30 –

http://jhep.sissa.it/stdsearch?paper=07%281997%29004
http://arxiv.org/abs/hep-th/9612126
http://jhep.sissa.it/stdsearch?paper=02%281998%29013
http://jhep.sissa.it/stdsearch?paper=02%281998%29013
http://arxiv.org/abs/hep-th/9712230
http://jhep.sissa.it/stdsearch?paper=10%282000%29001
http://arxiv.org/abs/hep-th/9906242
http://arxiv.org/abs/hep-th/0009072
http://arxiv.org/abs/hep-th/0006224
http://jhep.sissa.it/stdsearch?paper=07%282001%29007
http://jhep.sissa.it/stdsearch?paper=07%282001%29007
http://arxiv.org/abs/hep-th/0102146
http://jhep.sissa.it/stdsearch?paper=08%282000%29015
http://arxiv.org/abs/hep-th/9906200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C203
http://arxiv.org/abs/hep-th/9912147
http://jhep.sissa.it/stdsearch?paper=04%282000%29003
http://jhep.sissa.it/stdsearch?paper=04%282000%29003
http://arxiv.org/abs/hep-th/9912188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB580%2C519
http://arxiv.org/abs/hep-th/9907131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB593%2C155
http://arxiv.org/abs/hep-th/0007075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB600%2C457
http://arxiv.org/abs/hep-th/0010196
http://jhep.sissa.it/stdsearch?paper=02%282001%29008
http://arxiv.org/abs/hep-th/0010217
http://jhep.sissa.it/stdsearch?paper=01%282001%29018
http://arxiv.org/abs/hep-th/0010223
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C461
http://arxiv.org/abs/hep-th/0401135
http://jhep.sissa.it/stdsearch?paper=08%282005%29050
http://arxiv.org/abs/hep-th/0504164
http://jhep.sissa.it/stdsearch?paper=09%282005%29006
http://arxiv.org/abs/hep-th/0002037


J
H
E
P
1
1
(
2
0
0
6
)
0
0
8

[18] M.R. Douglas, B. Fiol and C. Romelsberger, The spectrum of BPS branes on a noncompact

Calabi-Yau, JHEP 09 (2005) 057 [hep-th/0003263].

[19] M. Billo, B. Craps and F. Roose, Orbifold boundary states from cardy’s condition, JHEP 01

(2001) 038 [hep-th/0011060].

[20] M.R. Gaberdiel, Discrete torsion orbifolds and D-branes, JHEP 11 (2000) 026

[hep-th/0008230].

[21] B. Craps and M.R. Gaberdiel, Discrete torsion orbifolds and D-branes. II, JHEP 04 (2001)

013 [hep-th/0101143].

[22] H. Klemm, BPS branes in discrete torsion orbifolds, JHEP 07 (2005) 010 [hep-th/0504196].
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